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A B S T R A C T

The just noticeable distortion (JND) has been considered a suitable solution for controlling the watermark
strength and generating robust watermarking schemes with distortions that are below the sensitivity threshold.
However, JND assumes the same attention level for all image regions, which does not reflect the behavior of an
observer. Recently, several models have utilized the modulatory effect of visual attention over JND to improve
the efficiency of watermarking schemes. However, most of them have focused on still images. In this paper, we
propose a saliency-modulated JND profile for improving video watermarking schemes. Our method aims to
adapt the watermark strength to obtain the most robust possible scheme with an imperceptible watermark.
Moreover, it has the advantage of fully exploiting the spatiotemporal properties of video to minimize its per-
ceptual redundancies and achieve low computational complexity. Experimental results show the effectiveness of
our proposed method and its contributions to video watermarking process.

1. Introduction

DIGITAL watermarking provides a proper platform that aims at
protecting copyrighted multimedia data from illegal manipulation and
undesired distribution [1,2]. One of the main challenges that are faced
by watermarking researchers is to embed a sufficiently robust water-
mark signal to overcome a wide range of attacks while preserving the
visual quality of the host signal [3]. Since the human visual system
(HVS) performs the final evaluation of the visual quality of processed
multimedia, its properties have been long studied to adjust the water-
mark strength in terms of visual sensitivity. Some watermarking
schemes apply implicit HVS properties such as local contrast [4] and
local variance [5,6] to adjust the watermark signal strength while
preserving the visual quality. However, they require extra factors to
regulate the watermark strength that are empirically determined and
vary from one image to another [7]. The just-noticeable distortion
(JND) emerges as a suitable solution for this problem, as it represents
the highest distortion that is tolerated by the HVS and allows the op-
timal watermark strength to be set to make variations below the sen-
sitivity threshold [8]. A variety of JND models have evolved over the
years, from models in the spatial domain (pixel-wise models) [8–11] to
models in the frequency domain (sub-band models) [12–14]. Moreover,
the application of JND can be focused on images [14,15] by exploiting

only spatial characteristics and videos [16–19] by considering features
such as motion compensation and the temporal contrast sensitivity
function (CSF).

The main issue with the JND threshold is that it assumes the same
attention level on all image areas, which is not consistent with an ob-
server’s behavior. Visual attention is an important mechanism that
regulates human perception since it identifies those areas that attract
the HVS attention (salient regions) and thus modulates the visual per-
iphery [20,21]. Since the observer’s capability to detect distortions is
higher on salient regions than the remaining areas, the performances of
the watermarking schemes can be enhanced if visual attention mod-
ulates the JND threshold, i.e., the JND model is adapted based on
salient regions. Recently, some works on the application of saliency-
modulated JND models to digital watermarking were reported in the
scientific literature. Nevertheless, most of them focused on still images.

In this paper, we propose a saliency-modulated JND profile that
improves the robustness and imperceptibility of video watermarking
techniques. In contrast to current proposals, our method has the ad-
vantages of fully exploiting the spatiotemporal properties of HVS and
being an agile process. Our full proposal is divided into two main parts:
First, we describe our proposed saliency-modulated JND profile, which
consists of three steps: (a) JND estimation, (b) saliency mapping, and
(c) the modulation stage. In this part, the main contribution of the
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authors lies not in the detailed parts but in the whole framework that
composes the proposed JND profile. The second part of this paper
shows how to take advantage of the proposed saliency-modulated JND
profile by applying it to video watermarking. Here, we use the proposed
JND profile to adjust the energy of a basic video watermarking tech-
nique, thereby improving its performance. The performed robustness
tests include signal processing and video-based operations.
Imperceptibility is measured by using advanced frame- and video-based
metrics to obtain a better correlation with HVS subjective quality as-
sessment. Both parts, namely, the design of our saliency-modulated
JND model and its application, are compared with some existing so-
lutions to highlight their advantages and contributions. Experimental
results confirm the effectiveness of the proposed JND profile, since it is
able to compute a JND map in a computationally inexpensive manner
and is consistent with observer attention in videos with much and little
movement, which allows smart modulation of the watermark strength,
thereby producing a more robust watermarked video sequence with
high visual quality.

The remainder of this paper is organized as follows: a brief review of
related works is presented in Section 2. Section 3 provides a detailed
description of the proposed spatiotemporal saliency-modulated profile.
The proposed video watermarking scheme, which includes embedding
and extraction processes, is presented in Section 4. Section 5 shows and
discusses the experimental results, and Section 6 presents the conclu-
sions of this research.

2. Related works

This section presents a brief review of previously published works
that are related to the application of saliency-modulated JND models to
digital watermarking. Niu et al. [22] proposed a watermarking scheme
that is implemented in the discrete cosine transform (DCT) domain,
where a saliency-modulated JND profile regulates the watermark
strength. The JND profile is calculated by merging contrast and lumi-
nance masking, with the spatial CSF and the spectral residual [23]. Wan
et al. [24] reported a watermarking technique that is based on the
logarithmic spread transform dither modulation framework (STDM).
The authors use Watson’s model [12] to obtain the JND threshold.
Then, the luminance and texture features are merged to compute a
saliency map for adjusting the STDM quantization step. Finally,
Agarwal et al. [25] employ a saliency-modulated JND profile, in which
the JND threshold modulates the scheme energy and a saliency map is
used to preserve relevant areas of the image. None of these techniques
consider temporal features of the HVS, so they are not suitable for vi-
deos. Only a few studies on video watermarking using a saliency-
modulated JND profile have been reported. In [26], Cedillo-Hernandez
et al. introduced a watermarking scheme for video that uses the
quantization index modulation (QIM) model [27]. All frames are di-
vided into regions of interest and regions of no interest by using a visual
attention method for still images. Then, the QIM step size is adjusted in
each DCT block by using a JND profile only partially. The scheme
achieves good robustness against video transcoding operations; how-
ever, the method does not fully exploit the temporal properties of HVS.
Moreover, the saliency map calculation technique that is used in this
reference is highly computationally expensive. Chen et al. [28] pro-
posed a spatiotemporal saliency map for obtaining a location at which
to perform the watermark embedding process. This method proposes a
fusion of static and temporal saliency maps for exploiting spatio-
temporal HVS features, but the static map uses a saliency method that is
computationally costly [29,30]. Furthermore, Chen’s method is limited
to providing a watermark location and does not exploit the features of
the full frame.

3. Saliency-modulated JND profile

Perceptual redundancies refer to any visual information that cannot

be perceived by the HVS. Thus, their removal does not affect the visual
quality of a given signal. In this section, we introduce our proposed
saliency-modulated JND profile, which is a process that fully exploits
the spatiotemporal HVS properties and represents the perceptual re-
dundancies of video quantitatively. Our proposed saliency-modulated
JND profile involves three main steps: JND estimation, saliency map-
ping, and the modulation stage.

3.1. JND estimation

In this section, we compute the highest error that is tolerated by the
HVS for each DCT sub-band. The following explains in detail two JND
profiles. Both models are DCT-based, focus on video and have out-
standing performance. The next sections describe the performance and
contribution of these methods. Jia et al. [18] introduced a JND profile
(referred to as the JND-1 profile hereinafter) that is the product of a
base threshold, a contrast mask, and a luminance adaptation (1):

− =t n i j T t n i j ψ t n i j ψ t nJND 1( , , , ) ( , , , )· ( , , , )· ( , )CONT LUM (1)

where i and j are the DCT subbands indices, n indicates the index of a
block in a frame, and t is the frame position along the video sequence.
The base threshold T is determined by (2):
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where G is the spatiotemporal baseline CSF, g is the number of gray
levels, and Δg denotes the difference between the maximum and
minimum gray intensities on the frame. The term ηi,j is a compensatory
factor that depends on oblique and spatial summation factors [12], which
is defined as:
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The compensatory factor (3) includes DCT normalization elements,
which are denoted as Φ; a parameter r which regulates the oblique effect
and has a value of 0.6, and the directional angle of a DCT component
(φij). In this computational model, N is the dimension of the DCT block,
ωi,j is the spatial frequency of a DCT sub-band, and θx, and θy are the
horizontal and vertical angles of a pixel respectively. The displayed
length of a pixel (Λ) is equal to 1 in most of the displays and the viewing
distance l is calculated using the international standard ITU-R BT 500-
11 [31]. The baseline CSF measures the HVS acuity as a function of the
speed of an object, which is displayed in front of the retina (8):
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where c0 = 7.12, c1 = 0.56, k1 = 6.1, k2 = 7.3, k3 = 23, and ε = 1.7
[18]. The retinal velocity V is the difference between the speed of an
object within an image when eye movement is not involved (VI) and the
eye movement velocity (VE):

= −V n t V n t V n t( , ) ( , ) ( , )I E (9)

= +V n t β V n t V V( , ) min[ · ( , ) , ]E I MIN MAX (10)
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= +V n t f MV n t θ MV n t θ( , ) · ( ( , )· ) ( ( , )· ) .I x x y y
2 2 (11)

The term β = 0.92 refers to the efficiency of object tracking. The range
values for eye velocity are VMIN = 0.15 and VMAX = 80 deg/s, and the
image velocity VI is calculated using the video frame rate f and the
motion vector components (MV) per block. Contrast masking is com-
puted by merging intra-band (ρIntra) and inter-band (ρInter) masking:
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DCT blocks are classified into Texture (T), Edge (E) and Plain (P) blocks
according to [14]. In this method, DCT sub-bands, which are denoted as
C(i,j), are divided in low (L), middle (M) and high (H) frequencies, ε =
0.36, λ2 = 1+[((M+H)− ξ1)/κ] λ3, λ3= 1.25, λ4= 1.125, ξ1= 290
and κ=1510:
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Finally, the luminance adaptation is computed as follows:
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where k4= 2, k5= 0.8, ϑ1= 3 and ϑ2= 2 [18]. Wei et al. [19] propose
a spatiotemporal JND model (referred to as the JND-2 profile herein-
after) defined as a product of a spatial threshold and a temporal reg-
ulatory factor:

− =t n i j T t n i j t n i jJND 2( , , , ) ( , , , )·Ω ( , , , ).S T (17)

The spatial threshold TS is given by the product of contrast masking
(ΩC), luminance adaptation (ΩL), and a basic threshold TBASIC and is
defined as:

=T t n i j T t n i j t n i j t n( , , , ) ( , , , )·Ω ( , , , )·Ω ( , )S BASIC C L (18)
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where s=0.25, a=1.33, b=0.11 and c=0.18 [19]. The spatial
frequency (ωi,j) and the compensatory factor (ηi,j) were defined pre-
viously in (6) and (3) respectively. Contrast masking is computed by
categorizing the DCT blocks into T, E and P blocks using a process that
is based on the Canny Operator [32] which is explained in detail in
[19]. Then, an elevation agent α for each DCT block type is determined
by (20):
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where i and j are DCT subbands indices. With this value, the contrast
masking is calculated using (21):
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As the last step in the computation of the spatial threshold, the lumi-
nance adaptation effect is given by (23):
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where I is the average intensity value of the block. Finally, the tem-
poral regulatory factor (ΩT) that is used in (17) is defined as:
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where ωT is the temporal frequency and is given by (25):
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The two terms in (25) are a particular case of the estimation of spatial
frequency and retinal velocity. If we use j=0 and θy=0 in (6) and (9)-
(11) respectively, we obtain the horizontal component (first term), and
in contrast, if we use i=0 and θx=0, we obtain the vertical one
(second term).

Table 1 presents a comparison of the JND-1 and JND-2 models with
the aim of summarizing their similarities and differences. The main
similarities are that the two models are DCT-based; they merge lumi-
nance adaptation, contrast masking, and a temporal factor; and they
can be applied to compute JND for video. On the other hand, we can
highlight three main differences between the models: (a) although the
JND-1 and JND-2 schemes use similar modulatory factors, such as
contrast and luminance, they calculate them in considerably different
ways; (b) the JND-2 model considers motion direction, which causes
different effects on spatial frequencies; and (c) JND-2 uses a temporal
regulatory factor that assumes that the temporal frequency is dependent
on the spatial frequency, i.e., it considers temporal and spatial CSF as
separable components, which can lead to inaccurate JND estimation
[33]. In contrast, in the JND-1 model, both the temporal and spatial
CSF effects are formulated as a single multidimensional function.

3.2. Saliency mapping

Visual attention is a complex cognitive process that implies a set of
strategies for simplifying the inherent search mechanism in visual
perception [34]. Although the research on saliency detection began
many years ago, most studies have focused on images and only some
computational models for representing the concept of visual attention
in video sequences have been constructed [28,30,35–37]. These
methods use temporal data from video sequences to obtain a more
precise saliency map. However, their process is carried out in the un-
compressed domain. Thus, their main drawback is the associated high
computational cost. To compute a fast and accurate saliency-modulated
JND model, we employ a visual saliency technique that works with
spatiotemporal features that are extracted directly from a compressed
video stream [38]. The method obtains three features (luminance,
color, and texture) from intra-frames and one feature (motion) from
inter-frames. First, to compute the static saliency map (SS), the DC
coefficient value in each 8× 8 DCT block of the luminance (Y) com-
ponent of each intra-frame represents the Luminance feature (L). In a
similar way, color features (C1, C2) are computed by using the DC

Table 1
A comparative between JND-1 and JND-2 models.

JND
model

Category
(Domain)

Luminance
adaptation

Contrast
masking

Motion
direction

Spatial &
temporal CSF

JND-1 Sub-band
(DCT)

Yes Yes No Together

JND-2 Sub-band
(DCT)

Yes Yes Yes Separately
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coefficients from Chrominance components (Cr, Cb). According to zig-
zag scanning, the first nine AC coefficients of each DCT block of the Y
component represent the texture feature (T). Once we obtain the static
features, we use a Gaussian model to compute the weight differences
among center and surrounding blocks, as follows:

∑=
≠

− × × −S
F

σ π
e

2
·i

k

j i

i j
k

E σ, 0.5 i j,
2 2

(26)

where Sik is the saliency map value in the ith block, that corresponds to
the feature k, with k ∊ {L, C1, C2, T}; Ei,j represents the Euclidean dis-
tance between the ith and jth DCT blocks; and σ is the standard deviation
of the Gaussian distribution. The term Fki,j is the difference between the
ith and jth blocks that corresponds to feature k. This value can be a scalar
difference (for color and luminance) or a vector distance (for texture
feature). The static saliency map is a combination of the normalized
saliency maps of luminance, color, and texture:

∑=
∀

S N S( )/4S
k

k

(27)

where N is the normalization operation on each saliency map, and Sk

represents the complete saliency map using each extracted feature k, k ∊
{L, C1, C2, T}. The motion saliency map SM is computed for inter-frames
by extracting the MVs from the video bitstream. An MV is denoted by a
two-dimensional vector (vx(t), vy(t)) that is assigned to a block and re-
presents the vertical (vx(t)) and horizontal (vy(t)) motion of the block
regarding matched blocks on a reference frame [39]. The motion fea-
ture (V) is computed according to the type of inter-frame, by using (28):

= + −V MV MV( 1)·p f (28)

For bidirectional predicted frames (B-frames), V utilizes the past re-
ference motion (MVp) and the future reference motion (MVf). For pre-
dicted frames (P-frames), it uses only the past reference motion and the
second term in (28) becomes zero. Considering the above, SM is com-
puted by applying Eq. (26) with k ∊ {V} and using the Euclidean dis-
tance to calculate the difference factor Fki,j. The static and motion sal-
iency maps are merged by using the parametrized normalization, sum
and product (PNSP) method to obtain the final saliency map S, (29):

= + − + −S β S t β S t β S t S t( ) ( 1) ( ) ( 1)S M S M1 2 3 (29)

=
∑

∑ − + −
=β

S i j

i S j S S i j
n

( , )

( ) ( ) · ( , )
, {1,2}n

i j
k

i j i e j e
k

( , )

( , ) ,
2

,
2

(30)

=
∑

∑
S

i S i j

S i j

· ( , )

( , )i e
i j

k

i j
k,

( , )

( , ) (31)

=
∑

∑
S

j S i j

S i j

· ( , )

( , )j e
i j

k

i j
k,

( , )

( , ) (32)

where β1, β2, and β3 are parameters for setting the weight of each
component, t indicates that the static saliency map is computed using
the current intra-frame and t− 1 indicates that the motion saliency
map is computed using the previous inter-frame. The parameter Sk in
(30)-(32) is defined as Sk = {SS} to calculate β1 and as Sk = {SM} to
obtain β2. Then the value of β3 is given by (β1+ β2)/2. The term Sk(i,j)
is the saliency map value that corresponds to feature k at coordinate
(i,j).

3.3. Modulation stage

Focusing visual attention on a particular location results in a sig-
nificant reduction of HVS computational resources in other regions
[40]. Therefore, the visual attention process modulates the HVS ability
to perceive distortions. The visual sensitivity to errors is numerically
calculated as the inverse of the JND. Consequently, the JND threshold

decreases in salient areas since the visual sensitivity to errors is higher
in those regions. Conversely, this value must be increased to allow more
distortion in the remaining areas. We use the study that is presented in
[41] to generate the modulating function for adjusting the JND profile
map in salient areas, which is defined as follows:

=S t n i j t n(JND) JND( , , , )·Ψ ( , )M (33)

where S(JND) is the representation of the saliency-modulated JND
profile and ΨM is an empirical linear function for adjusting the JND
value of the nth block of the frame at time t, which is defined as ΨM(t,n)
= 1− (St,n− τ1) τ2 and is graphically represented in Fig. 1. The term
St,n denotes the saliency data average in the nth block of the tth frame
and the parameters τ1 and τ2 control the modulation process which,
based on our experiments, have values of 0.25 and 1.05 respectively.

4. Video watermarking scheme

In this section, we present a video watermarking scheme, which is
guided by our proposed saliency-modulated JND profile. The proposed
video watermarking scheme uses DCT coefficients of intra-frames (I-
frames) and motion vectors of inter-frames (P and B frames). This in-
formation is obtained by performing the video decoding process only
partially. The variable length coding (VLC) tables, run-length encoding
(RLE) and zig-zag scanning are used to obtain the 64 DCT coefficients of
each block from the coded intra-frames. A similar process is im-
plemented to extract the motion vector values for inter-frames [38,42].
Since the proposed method does not require the DCT coefficients of
inter-frames or spatial information of intra-frames, it is possible to
avoid performing unnecessary decoding operations such as motion
compensation or inverse DCT, which are the most computationally
expensive operations [43]. In the proposed video watermarking
method, two watermark bits are embedded in each 8×8 DCT block
using only the luminance data of I-frames. To obtain a more robust
scheme, the watermark is embedded in the AC sub-bands that are more
resilient to the quantization task [26]. The QIM algorithm is the core
method for performing the watermark embedding and detection pro-
cesses. Commonly, the QIM method embeds the watermark data into a
host signal by quantizing it with a fixed scalar quantifier. In our pro-
posed approach, this quantifier is dynamically adapted by using the
proposed saliency-modulated JND profile. This approach allows a more
robust scheme against several attacks to obtained, without significantly
affecting the visual quality. Below, we describe the watermark em-
bedding and detection processes.

4.1. Watermark embedding process

Fig. 2 shows the proposed watermark embedding process which is
described as follows: (i) Partially decode the video stream to obtain the
luminance and chrominance DCT blocks of 8×8 pixels from intra-

Fig. 1. The modulation function ΨM(t,n) which is employed to adjust the JND map re-
garding the saliency map average in the nth block of the tth frame (St,n).
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frames and the motion vectors from inter-frames. (ii) Obtain the fea-
tures of luminance, texture, color and motion from extracted video data
for computing the saliency map of a frame F at time t, according to (26)-
(32). (iii) Calculate the JND thresholds of DCT sub-bands C1,2 and C2,1

for all DCT blocks of F. (iv) Modulate the previously computed JND
threshold of each DCT sub-band by using (33). (v) Build the watermark
vector W= {w1, w2,…,wk}, wk ∊ {0,1}, k ∊ {1,2,…,K}, K = (M×N)/32
where M and N denote the frame dimensions. (vi) Use the QIM algo-
rithm to embed the kth bit of the watermark vector (wk) in the Ci,j sub-
band, as follows:
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where Cw
i,j represents the (i,j)th watermarked DCT sub-band and αi,j is the

QIM quantifier which is defined as:

=α S t n i j Q(JND( , , , ))·i j, (35)

where Q is the fixed quantization step which is experimentally de-
termined later. The term S(JND(t,n,i,j)) is the saliency-modulated JND
threshold for the (i,j)th DCT sub-band of the nth block in frame F at time
t. This value is computed in step (iv) of the watermark embedding
process. Note that the QIM embedding process (34) is carried out for
both the C1,2 and C2,1 DCT sub-bands.

4.2. Watermark extraction process

Fig. 3 shows a chart of the proposed watermark extraction process
which consists of the following steps: (i) The video codified bitstream is
partially decoded to extract the 8×8 DCT blocks of the luminance
space of the watermarked frames. (ii) The watermark vector is obtained

by using the QIM extraction process on the (i,j)th watermarked DCT sub-
band:
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where ẅk is the kth bit of the extracted watermark vector, Cw
i,j is the (i,j)th

watermarked DCT sub-band and αi,j is the QIM quantifier, which is
computed in the embedding process and stored to be used as a secret
key in the extraction process. (iii) The bit error rate (BER) is used to
determine the reliability of the extracted watermark with respect to the
embedded one.

5. Experimental results

In this section, we carry out experiments to evaluate the effective-
ness of our proposed saliency-modulated JND profile and to measure its
contribution to enhancing the watermarking process. To conduct our
tests, we have built a video database of twenty videos, which are co-
dified on the MPEG-4 Part 2 compression standard on Advanced Simple
Profile [44]. The first ten videos have a resolution of 352× 288 pixels
(CIF format) at 30 frames per second (fps). The rest of the videos have a
size of 704× 576 pixels (4CIF format) at 24 fps. The test database is
composed of low- and high-motion sequences with different conditions
of lighting, texture, and color. All results were obtained from a proto-
type that was implemented using the MATLAB© platform.

5.1. Evaluation of the saliency-modulated JND profile

We evaluate the performance of our proposed JND profile from
three perspectives: (1) time-consumption, (2) consistency of the ob-
tained saliency map with the observer’s attention in environments with
much and little movement, and (3) how much noise the method is able
to embed into a video without being detected by the HVS.

Time-consumption analysis: One of the most important drawbacks of
current approaches is the large amount of computational time that is
required to compute the saliency-modulated JND profile. In this sec-
tion, we conduct a performance comparison between existing works
and our proposed approach in terms of processing time. For fair com-
parison, we consider three stages for all methods: video decoding pro-
cess, JND computing, and saliency estimation. Table 2 shows the
average amount of time that is required to process all video sequences
at each stage. The results are divided in terms of video size to distin-
guish processing time of CIF and 4CIF formats. The total processing
times for all videos are shown in the last column of Table 2. According
to Table 2, the video decompression time that is required by our pro-
posed approach is approximately 10% of the times for the methods in
[26,28]. This notable difference is due to the partial decoding process
that is used in our proposed approach. All methods employ very similar
JND techniques. The main difference is that the method in [26] per-
forms the JND calculation for all the frames of the video sequence,
while the method in [28] and our proposed approach perform the JND
calculation only in key frames. Finally, the visual attention based on
information maximization (AIM) [45] method, which is used in [26],

Fig. 2. The proposed watermark embedding process.

Fig. 3. The proposed watermark extraction process.

Table 2
Time consumption analysis.

Method Video Size Time (minutes)

Decoding JND Saliency Total Average

[26] 4CIF 6.1 9.7 15.6 31.4 21.3
CIF 3.1 3.4 4.7 11.3

[28] 4CIF 6.1 1.7 3.7 11.5 8.1
CIF 3.1 0.6 1.1 4.8

Proposed 4CIF 0.5 1.3 1.4 3.2 2.2
CIF 0.3 0.5 0.4 1.1
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has a high computational cost, as it can take up to 15min to process all
frames of a video with 4CIF spatial resolution. Although the method in
[28] and our proposed approach perform saliency estimation only for
key frames, the saliency estimation method that is employed in our
proposed approach [39] reduces the computation time by approxi-
mately 40% compared to the model of visual attention to salient proto-
objects [46], which is used in [28]. The final average shows that our
proposed JND profile achieves significant time savings since it is ap-
proximately three times faster than the method in [28] and nine times
faster than the model in [26].

Saliency evaluation: The effectiveness of a saliency-modulated JND
profile strongly depends on its capacity for calculating a saliency map
that is consistent with the factors that guide attention. The more ac-
curate the calculation of salient areas, the higher the chance to take
advantage of unsupervised regions and obtain a more efficient water-
marking scheme. We test the performance of our JND profile by using
high- and low-motion videos. For this purpose, we classify all the video
sequences according to the level of movement activity. From encoded
video data, we can obtain the number of macroblocks that are classified
as Motion Compensated (MC) or Non-Motion Compensated (No_MC)
within an inter-frame (P-frame). The presence of a No_MC macroblock
in a P-frame indicates a perfect coincidence with its reference (skipped
block or not coded at all) or a large difference that cannot be expressed
with motion estimation and has to be inter-coded (scene changing)
[47]. The absence of No_MC blocks indicates the presence of motion
within a video scene. Therefore, since the video motion intensity is
inversely proportional to the number of No_MC macroblocks in a P-
frame, we define the video motion ratio µ as:

=μ NoMCNumber of inter Macroblocks
Number of Frame Macroblocks

. (37)

In this way, a higher value of video motion ratio µ indicates a video
sequence with little movement. By using this metric, we classify all
videos as high- or low-motion videos according to whether the ratio is
below or above the database average. With this classification, we
analyze the saliency map that is obtained in each case by using two
popular metrics: (1) the Normalized Scanpath Saliency (NSS) [48] and
(2) the Area Under the ROC Curve (AUC) [49]. We evaluate the results
with more than one metric to guarantee that the conclusions are in-
dependent of the chosen metric. The reader is referred to [50] to obtain
a detailed explanation of these saliency evaluation metrics. The binary
fixation map (a zero matrix with 1 s at locations of fixations), which is
used to compute both saliency metrics, is obtained according to the
classification of each video. For videos with little motion, we consider
static elements and perform semi-automatic separation of foreground
objects from the background. In contrast, for high-motion videos, the
binary fixation map is automatically obtained by considering the blocks
with larger motion vectors. Then, we calculate the values of the NSS
and AUC metrics among the binary fixation map and the computed
saliency maps ([26,28], and our proposed approach) by using MATLAB
functions, which are freely available in [51]. The obtained results are
shown in Table 3.

According to Table 3, the AIM method, which is used in [26],

achieves the best performance for static saliency maps (videos with
little motion) according to both the NSS and AUC metrics. A value of
NSS that is closer to one indicates larger saliency values at human
binary fixated locations than other locations. Similarly, the larger the
AUC score, the better the saliency prediction of the saliency map. For
motion saliency maps (videos with high motion), our proposed ap-
proach obtains the best results for NSS and AUC, which means that our
proposed approach can better determine areas with greater motion
activity. The model of visual attention to salient proto-objects, which is
used in [28], does not achieve good performance since the computed
salient areas are insufficient to cover the binary fixation map. An
average of all the computed saliency maps, including static and motion
maps, is shown in the last column of Table 3. As our scheme achieves
the best average scores for the NSS and AUC metrics, we can assert that
our proposed method estimates a saliency map that is consistent with
the features that guide attention in high- and low-motion videos. This
characteristic is one of the key aspects of the proposed approach for
enhancing the robustness and imperceptibility of video watermarking
methods.

To better illustrate the achieved performance, we show the results
for one representative sequence of high- and low-motion videos (Fig. 4).
The upper row of Fig. 4 corresponds to the “soccer” video sequence,
which has a motion ratio of µ=10.5%, i.e., it is a high-motion video.
As we stated before, the binary fixation map (second column) is built by
considering the blocks with larger motion vectors. In this case, the AIM
method, which is used in [26], (third column) achieves scores of 0.79
and 0.60 for the NSS and AUC metrics, respectively. The visual saliency
model, which is used in [28], (fourth column) obtains values of 0.61
and 0.50 for the NSS and AUC metrics, respectively, since there are very
few salient areas. The last column shows the saliency estimation results
of our proposed approach, with values of 0.95 and 0.87 for the NSS and
AUC metrics, respectively. The saliency map that is computed by our
proposed approach matches almost perfectly the binary fixation map.
Finally, the lower row of Fig. 4 shows the “container” video sequence,
which has a motion ratio of µ=96%. Here, the best performance is
achieved by the AIM method (NSS= 0.96, AUC=0.88), followed by
the proposed scheme (NSS=0.87, AUC=0.80) and the model of vi-
sual attention to salient proto-objects (NSS= 0.43, AUC=0.5). Al-
though our proposed approach does not achieve the best performance
for static saliency maps, it obtains suitable representations of salient
regions, which are mostly coincident with the static binary fixation
map.

Noise injection capability: The performance of a JND profile is
evaluated in terms of its ability to generate a noise-injected frame with
similar visual quality on a higher level of noise. Thus, the method must
better distribute the noise across the frame. In the third experiment, we
create a noise-injected video by using the JND models that are de-
scribed in tion 3.1. Then we modulate the noise over it by applying our
proposed JND model. The aim of this test is to determine which method
generates the lowest visual perceptual distortion. The model for pro-
ducing a noise-injected video is as follows:

′ = +C t n i j C t n i j R n i j f( , , , ) ( , , , ) ( , , )· JND (38)

where C′ is the noise-injected DCT sub-band on the nth block of the
frame at time t. The term R takes the values of (+1, −1) in a random
way and fJND denotes the JND threshold. The four JND estimators that
are applied to obtain the JND threshold fJND are denoted as (a) JND-1,
(b) S(JND-1), (c) JND-2, and (d) S(JND-2). To obtain a convincing
evaluation, the visual quality is judged in two ways: (i) by evaluating
the global quality distortion and (ii) using a block-based distortion
measure to confirm that the noise is injected in appropriate regions of
the frame. The global distortion is measured by using the PSNR metric.
Table 4 shows the obtained results after computing the PSNR between
original and noise-injected videos. The presented values correspond to
the average of the frames of all video sequences.

According to Table 4, the JND-1 and JND-2 profiles are improved by

Table 3
Saliency maps precision evaluation.

Method Metric Saliency Map Average

Static Motion

[26] NSS 0.92 0.72 0.82
AUC 0.85 0.62 0.74

[28] NSS 0.49 0.41 0.45
AUC 0.54 0.50 0.52

Proposed NSS 0.87 0.93 0.90
AUC 0.80 0.81 0.81
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our saliency-modulated JND model, since the video frames can accept
more distortion (an average gain of approximately 3 dB) without it
being easily perceived by a viewer. The proposed method modulates the
injected noise by exploiting the HVS boundaries with a strategic ap-
proach, i.e., it achieves a more aggressive distortion on the less notable
regions of each frame. To prove the above, we first examine the injected
noise in the most relevant areas. Fig. 5 shows a magnified view of the
30th frame of the “Miss-America” video sequence. The magnified view
matches the highest-sensitivity area, i.e., the area with the highest va-
lues in the saliency map. In the bottom-left corner of each image in
Fig. 5, a magnified version of the area that is bounded by a red1 square
is shown. The modulatory effect of our proposed approach (Fig. 5(c)
and (e)) decreases the distortion on the most important parts of the
frame, thereby improving the perception of visual quality. Moreover, it
is noticeable that the JND-1 model (Fig. 5b) has a better performance
than JND-2 (Fig. 5d) since it produces a noise-injected frame with less-
perceptible distortion.

To determine the distribution of the noise across the entire image,
we carry out an assessment of the quality distortion by using the 5th
frame of the “flower” video sequence (Fig. 6(a)). Each frame is divided
into blocks of 32×32 pixels. Then, the structural similarity index
(SSIM) [52] between the original and the noise-injected blocks is cal-
culated. The SSIM metric has better correlation with the subjective
evaluation of the quality of the HVS than the PSNR. Fig. 6(c) is the
noise-injected frame that is generated by using the JND-1 model and
Fig. 6(e) is its modulated version, which is produced by using our
proposed JND profile. For SSIM maps (Fig. 6(d) and (f)), brighter blocks
have higher SSIM values (better visual quality). According to Fig. 6, the
JND-1 scheme achieves good modulation of noise (Fig. 6(d)) since it
uses several properties of the HVS, such as block classification, contrast
masking, and luminance adaptation, as we explained in Section 3.
However, our proposed approach achieves better distribution of noise
by reflecting higher values of SSIM on the observer’s attention area
(Fig. 6(b)) and a greater amount of noise in the remaining regions
(Fig. 6(f)).

5.2. Evaluation of video watermarking framework

In this section, we assess the contributions of our proposed saliency-
modulated JND profile when it is applied in the video watermarking

Fig. 4. An evaluation of the precision of saliency maps. From left to right, original frame from video sequence; binary fixation map; saliency map from AIM model [45] used in [26],
saliency map from the visual attention model to salient proto-objects [46] used in [28], and the saliency map used in our proposal [39].

Table 4
Visual quality achieved by different JND profiles.

fJND

JND-1 S(JND-1) JND-2 S(JND-2)

PSNR (dB) 36.18 34.09 33.84 29.85

Fig. 5. The most sensitive area of the 30th frame of the “Miss-America” video sequence.
(a) Original frame, (b) Noise-injected frame using JND-1 with PSNR=34.85 dB, (c) JND-
1 modulated by our proposed approach (S(JND-1)) with PSNR=32.09, (d) Noise-in-
jected frame using JND-2 with PSNR=30.24, and (e) JND-2 modulated by our approach
(S(JND-2)) with PSNR=28.12.

1 For interpretation of color in Fig. 5, the reader is referred to the web version of this
article.
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process. All the experiments of this section are based on the strategy of
performing the watermark embedding process (Section 4.1) on all vi-
deos by varying the watermark energy, i.e., the QIM quantifier (αi,j),
which is defined in (35).

For this purpose, we define a “basic watermarking model” (Model I)
as a method in which the QIM quantifier is a fixed value, i.e., all the
DCT sub-bands are watermarked with the same strength. Then, the
Model I is modified by modulating the watermark strength with the
JND-1 (Model II) and the JND-2 (Model IV) profiles. The Models II and
IV are referred to as “unmodulated JND profiles” since they use a JND
profile to better distribute the watermark energy, but do not consider
the visual attention. Finally, Models II and IV are enhanced by using the
proposed saliency-modulated JND profile to distribute the watermark
energy while taking into account salient regions. Model III corresponds
to the saliency-modulated version of Model II and Model V is the
modulated version of Model IV. Table 5 presents a summary of the QIM
quantifier values as well as the Model ID for each test set. Subsequently,
we conduct several experiments to evaluate the achieved performances
on each test set in terms of robustness and imperceptibility.

(1) Parameter determination: Here, we set the value of the QIM fixed

quantifier (Q) which allows a proper initial watermarking strength to
be obtained for Model I. This value is empirically chosen based on the
trade-off between imperceptibility and robustness. To obtain an optimal
value for Q, we perform the watermark embedding process, described
in Section 4.1, on all video sequences using αi,j = Q, with Q ∊ {2…20}.
Then, we calculate the SSIM and the PSNR between the original and
watermarked frames to determine how much the visual quality was
affected. In addition, we estimate the robustness in terms of BER value
between the extracted and embedded watermarks under the same
conditions. Table 6 presents the obtained results from this experiment,
which correspond to the averages over all frames of all video sequences.
From Table 6, we have selected Q=12 as the most appropriate value
according to the trade-off between robustness and imperceptibility
(boldface data line). With this initial strength value, PSNR and SSIM
values of 50.02 dB and 0.9901, respectively, are achieved, which in-
dicate that the watermark is imperceptible to an observer since, by
definition, the value of SSIM is 1 when two images are identical. A BER
value of zero indicates that the watermark has been entirely recovered
under these conditions.

(2) Watermark imperceptibility: To determine the quality of water-
marked videos, the PSNR is obtained between original and water-
marked frames (Fig. 7). The PSNR value for Model I is 50.02 dB, which
was defined in the previous section. Models II and IV have values of
39.03 dB and 37.94 dB, respectively. These values are higher than those
that are shown in Table 6 since only two DCT sub-bands are affected by
the watermark embedding process. The PSNR values of frames that are
modulated by our proposed approach, in Model III and Model V, are
36.43 dB and 34.32 dB, respectively. Here, we apply a similar judgment
to that used in Section 5.1 where, although a lower PSNR value is ob-
tained, the difference is viewed as a gain since our proposed approach
improves the quality of critical areas of the frame and allows greater
distortion in less significant regions. Our proposed saliency-modulated
JND profile (Models III and V) produces an average gain of 14.6 dB
compared to the basic watermarking method (Model I) and an average

Fig. 6. A block-based quality distortion evaluation. (a) 5th original frame of the “Flower”
video sequence, (b) Saliency map of (a), (c) Noise-injected frame using JND-1, (d) SSIM
map of (c), (e) JND-1 noise-injected frame modulated by our proposed approach, and (f)
SSIM map of (e).

Table 5
QIM quantifier values to conduct comparisons.

Model ID QIM quantifier (αi,j)

Model I Q
Model II Q×JND-1(t,n,i,j)
Model III Q× S(JND-1(t,n,i,j))
Model IV Q×JND-2(t,n,i,j)
Model V Q× S(JND-2(t,n,i,j))

Table 6
Determination of QIM fixed quantifier for Model I.

Q PSNR (dB) SSIM BER

2 55.42 0.9989 0.0058
4 54.89 0.9980 1.01 E−05
6 54.22 0.9967 1.01 E−05
8 52.84 0.9950 7.36 E−07
10 51.41 0.9926 4.20 E−09
12 50.02 0.9901 0.0000
14 48.79 0.9899 0.0000
16 47.67 0.9867 0.0000
18 46.68 0.9832 0.0000
20 45.75 0.9792 0.0000

Fig. 7. The PSNR average values between original and watermarked videos.
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gain of 3.11 dB compared to the unmodulated JND profiles (Models II
and IV).

However, it is well known that the correlation between the PSNR
and the HVS evaluation of quality is not sufficiently close. For this
reason, we measure the visual quality of watermarked videos by using
four HVS-based quality metrics that achieve an approximation that is
closer to human perception. Fig. 8 shows the results that are obtained
by comparing original and watermarked videos with the following
metrics: the SSIM, Visual Information Fidelity (VIF) [53], the Video
Quality Model (VQM) [54], and the spatiotemporal video SSIM
(stVSSIM) [55]. The SSIM and VIF metrics are frame-based and their
values decrease as the visual quality is affected.

According to Fig. 8, the differences between the basic watermark
model (Model I) and the other evaluated models (Models II–V) are
significantly lower with advanced quality metrics than those that are
obtained with the PSNR. These results suggest that the quality distor-
tion is barely noticeable and reaffirms the idea of gain that is described
at the end of the previous paragraph. From Fig. 8, Model II and its
saliency-modulated version (Model III) achieve high-quality perfor-
mances for both the SSIM and VIF metrics (Model II: SSIM=0.98, and
VIF= 0.89; Model III: SSIM=0.97, and VIF= 0.86). These scores
suggest that the watermark is not perceptible by a viewer. In contrast,
Models IV and V obtain smaller values of SSIM and VIF (Model IV:
SSIM=0.89, VIF= 0.71; Model V: SSIM=0.83, VIF=0.69). Thus,
they produce a higher distortion of visual quality.

Frame-based metrics are suitable for measuring the quality of low-
motion videos; however, for high-motion videos, it is relevant to con-
sider the inherent temporal redundancy by using video-based quality
metrics. VQM and stVSSIM are video-based metrics that consider tem-
poral distortions.

A higher value of stVSSIM indicates good quality, while a smaller
value of VQM represents a greater fidelity to the original video.
According to Fig. 8, the scores of the VQM and stVSSIM metrics support
the results that were obtained by SSIM and VIF, which means that an
observer cannot easily perceive the quality distortion of videos that
contain high- and low-motion content. The VQM values are 0.4, 0.47,
0.48, 1.33, and 1.36 for Models I to V, while the stVSSIM values are
0.96, 0.91, 0.82, 0.89, and 0.78 for Models I to V, respectively.

To better illustrate the distortion that is caused by the watermark
embedding process, in Fig. 9, we show the original 150th frame of the
“Silent” video (Fig. 9(a)), its saliency map (Fig. 9(b)), and its water-
marked versions that are obtained using Model I (Fig. 9(c)), Model II
(Fig. 9(e)), and Model III (Fig. 9(g)). In addition, we show the em-
bedded watermarks in Fig. 9(d), (f) and (h), respectively. Although the
watermark is embedded in the DCT domain, we display it in the spatial
domain with sharpness enhancement for visual convenience. According
to Fig. 9, the watermark that is embedded by Model I (Fig. 9(d)) is

barely noticeable. The Model II works properly by raising the water-
mark energy in textured regions and reducing it in plain areas
(Fig. 9(f)). However, the best performance is achieved by the proposed
JND profile (Fig. 9(h)), as it reduces the watermark strength in salient
areas and enhances it in the remaining regions.

(3) Watermark Robustness: Under practical circumstances, a water-
marked video sequence can be manipulated by carrying out hostile
intentional or nonintentional tasks. Such processes can partially or
completely remove the embedded watermark from a video sequence.
The proposed watermarking framework was designed to embed the
watermark data in the most resilient DCT subbands, which provides
high resistance to various attacks. We assess the watermark robustness
against common signal processing and video-based operations. We si-
mulate all the hostile tasks by incrementing the level of distortion on
watermarked videos. Then, we analyze the distorted video to compute
the BER and determine the robustness in each case. Fig. 10 shows the
performances of Models I-V against signal processing attacks. The
performance results that are achieved against impulsive and Gaussian
noise contamination are shown in Fig. 10(a) and (b), respectively. The
density of the impulsive noise varies from 0 to 0.010 and the Gaussian
noise variance ranges from 0 to 0.008. These attacks can eventually

Fig. 8. The average obtained results after applying the SSIM, VIF, VQM, and stVSSIM
quality metrics between original and watermarked videos.

Fig. 9. (a) The original 150th frame of “Silent” video, (b) saliency map of (a), its wa-
termarked versions using (c) Model I, (e) Model II, and (g) Model III, and the embedded
watermarks of (d) Model I, (f) Model II and (h) Model III.
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cause significant visual distortion. For example, values of
PSNR=32.5 dB and SSIM=0.63 are reached for an impulsive noise
attack with a density of 0.004. As expected, Model I obtains the highest
values of BER. Thus, it is the weakest method among those tested. For
both attacks, the Models II and IV show significantly enhanced per-
formance compared to Model I since the JND-1 and JND-2 profiles take
advantage of the HVS properties to embed a stronger watermark. Fur-
thermore, the improvement that is achieved by our proposed JND
profile when it is applied to modulate Models II and IV is noteworthy.
Model III and Model V perform better not only by improving the im-
perceptibility of the watermark, as we demonstrate in the previous
section but also by using a more robust scheme against noise con-
tamination attacks. Fig. 10(c) shows the results of robustness against
sharpness attacks, which are frequently performed in an intentional
way. The window size of the sharpness operation varies from 1 to 7. A
sharpness operation with a window size that is larger than 3 is not

usually performed since it produces high distortion of visual quality.
However, we apply these values to obtain a wider comparative range.
In contrast to noise contamination, sharpness attacks result in smaller
differences in performance among Models II to V. Nevertheless, the
models that are modulated by our proposed approach achieve lower
BER values.

A common operation that is performed by end-users is to change the
features of a video to adapt it to different devices. The two main fea-
tures that an end-user wants to change are (a) the video format, since
not all devices can reproduce all formats, and (b) the large size of video
files, which is widely related to bit-rate change. These operations are
aggressive and pose challenges to the preservation of the watermark
information in video sequences. For this test, the original videos are
codified by using the MPEG-4 Part2 compression standard with an
average bit rate of 8 Mbps. These videos are watermarked by using
Models I-V. Then, to evaluate the robustness against video-based at-
tacks, we use a transcoder to change the compression standard and the
bitrate. Table 7 shows the results of this operation, including the
compression standard, the bit rates, and the calculated BER values in
each case. According to Table 7, Model I does not achieve good ro-
bustness performance since it obtains high BER values. Model II en-
hances Model I and achieves very low BER values in all cases. The
quantization process is utilized to decrease the bit rate and, as a con-
sequence, the visual quality of videos. Model III obtains lower BER
values than Model II and comparable values to those that are obtained
by Models IV and V. Here, the small values of BER make accurate
watermark extraction possible after compression standard and bit rate
changes. Considering the complete results of Table 7, we conclude that
Model III achieves the best performance for video-based hostile op-
erations in terms of imperceptibility and robustness.

(4) Performance comparison: With the aim of highlighting the re-
levance of the obtained results, in this section, we perform a perfor-
mance comparison among Models III and V of our proposed approach
and the results that are obtained by the methods that are proposed in
[26,56]. For fair comparison, we selected recently proposed schemes
that focus on video watermarking and whose experiments are per-
formed under similar conditions to those that are used to evaluate our
proposed approach (e.g., similar test video database and simulations
attacks). Furthermore, these methods use the same metrics to measure
imperceptibility and robustness. Table 8 shows the BER results after
assessing the watermarked videos by each method against three re-
presentative attacks: (a) MPEG compression with a bit-rate of 1 Mbps,
(b) H.264 compression with a bit-rate of 1 Mbps and (c) impulsive noise
contamination (Noise I) with a density of 0.02. According to Table 8,
Model V achieves the best performance against video MPEG conversion,
as it obtains the lowest value of BER (0.009). For this attack, Model III
and the scheme in [26] also achieve small values of BER that signify a
retrieval error of approximately 1% of the watermarking information.

Fig. 10. The watermark robustness performance against (a) impulsive noise contamina-
tion, (b) Gaussian noise contamination, and (c) sharpening.

Table 7
Robustness against video compression standard and bit rate changing.

Compression
standard

Bit rate BER

Model I Model II Model III Model IV Model V

H.264-AVC 4 Mbps 0.061 0.015 0.008 0.006 0.003
2 Mbps 0.125 0.029 0.010 0.009 0.006
1 Mbps 0.203 0.064 0.023 0.019 0.017

MPEG-2 4 Mbps 0.061 0.013 0.005 0.004 0.000
2 Mbps 0.161 0.022 0.007 0.007 0.005
1 Mbps 0.224 0.056 0.012 0.011 0.009

WMV 4 Mbps 0.059 0.015 0.008 0.006 0.001
2 Mbps 0.166 0.023 0.009 0.008 0.008
1 Mbps 0.221 0.056 0.012 0.011 0.010

VP6 4 Mbps 0.072 0.012 0.005 0.002 0.000
2 Mbps 0.174 0.025 0.008 0.007 0.005
1 Mbps 0.227 0.059 0.014 0.011 0.011
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Similar performances are achieved by all methods against the impulsive
noise contamination operation. Again, Model V obtains the best per-
formance and Model III and [26] achieve BER values that are close to
0.02. In the two previous attacks, the scheme in [56] obtains the
highest values of BER (0.055), which indicates the worst performance.
In contrast, for H.264 video compression, the method that is proposed
in [56] achieves the best performance since the watermark is recovered
in its entirely. However, Model V obtains a low BER value of 0.017, and
Model III and the scheme in [26] only fail to retrieve approximately 2%
of the watermark data. Overall, the efficacy of a watermarking method
must be measured by considering the trade-off between robustness and
imperceptibility. The left side of Table 8 shows the imperceptibility
results (in terms of PSNR and SSIM) of the watermarked frames in the
absence of attacks. The method in [26] obtains values of PSNR=33.66
and SSIM=0.81. This method uses a strategy to obtain a robust scheme
against aggressive transcoding operations and it considers some HVS
characteristics. However, temporal HVS properties are not taken into
account in their entirely and the method is computationally expensive.
In contrast, the main objective of the approach in [56] is to achieve
real-time performance by reducing the computational cost. To accom-
plish this, it employs a window that is localized at the center of the
frame as the target for watermark embedding. This method obtains
values of PSNR=36.88 and SSIM=0.87 and, despite obtaining higher
values than the method in [26], the strategy does not guarantee the
imperceptibility of the watermark in video frames with large plain
areas. Method V of our proposed approach achieves PSNR=34.32 and
SSIM=0.83. Although it is the most robust method, it does not obtain
the highest level of imperceptibility. This may be due to some inherent
features of the JND-2 model, which we described at the end of Section
3.1. Finally, as we mentioned in the previous section, the best re-
lationship between imperceptibility and robustness is achieved by
Model III, which uses our proposed JND profile. Model III obtains
PSNR=36.43 and SSIM=0.97, and considering that SSIM quantifies
similarity with human perception, the obtained value (SSIM=0.97)
indicates the highest visual quality among those evaluated, with good
performance in terms of robustness.

6. Conclusions

We have presented the performance results of the proposed sal-
iency-modulated JND profile and measured its contribution to im-
proving the video watermarking process. Our proposed approach pro-
vides a fast and accurate method to fully exploit the spatiotemporal
HVS properties and create noise-injected video frames of similar visual
quality under a higher level of noise. We investigate the modulatory
behavior of the visual attention process over current video-oriented
JND profiles to improve the watermark trade-off between impercept-
ibility and robustness. The above has been experimentally demon-
strated by measuring the visual distortion that is caused by our pro-
posed approach with frame-based and video-based metrics, which
confirm the transparency of the watermark. Furthermore, several ex-
periments are carried out to assess the robustness of our proposed video
watermarking framework against signal processing and video-based
hostile operations. Our experimental results indicate that our proposed
approach produces a more robust video watermarking scheme with an

average gain of 14.6 dB compared with basic watermarking methods
and 3.11 dB compared with unmodulated JND profiles. Thus, our pro-
posed approach can be considered a suitable option and a potential
research direction for improving video watermarking schemes.
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